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ABSTR4CT 

This paper generalizes and estends the concept of the Schuler oscillation that occurs in the theory of 
inertial navigation q-stems, allowing one to see how the Schuler phenoiiienon affects inertial navigation 
systems operating in space. We show why a low earth orbit satellite’s orbital period is identical to the 
period of the Schuler pendulum, uihich is the period of the errors for terrestrial inertial navigation systems. 
We also show that the generalized forni of the Schuler oscillation takes the same fonn as the Hill-Clohessy- 
Wiltshire equations for satellite relative motioq and that the period of the out-of-plane motion in 
neighboring satellite relative trajectories is the same 2s the Schuler period. Finally, we describe how INS 
gyro drift inanifests itself in different coordinate systems for the orbital case. These results may assist 
orbital flight dynamics and attitude control systems engineers in the design and analysis of MS-equipped 
spacecraft 

INTRODUCTION 

People working in the field of inertial navigation systems (INS) are familiar with the phenomenon of 
Schuler oscillations [I] in INS. The majority of them are famiiiar nith the concept of the Schuler 
pendulum. However, the fact that the period of both is identical to the period of lour earth orbit (LEO) 
satellites and to the period of the oscillatory change of the relative location of two adjacent LEO satellites is 
not widely known in the INS community, if at all It is also not widely known that %.hen the INS is installed 
on a LEO satellite traversing a near-circular orbit, the INS error equations are the same as the Hill- 
Clohessy-Wiltshire equations that describe the change of the relative location of two adjacent LEO 
satellites. On the other hand, orbital mechanics professionals are well aware of the orbital period of LEO 
satellites and the equations of their relatifve motioq but in general they are unfamiliar aith the Schuler 
pendulum and Schuler oscillations in INS: and thus are unaware of the identity between all four periods. In 
this paper we esamine the four phenomena; namely: the Schuler pendulum, Schuler oscillations, the LEO 
satellite orbital period, and the period of the relative motion between two adjacent LEO satellites. In 
particular we show- why the LEO satellite’s orbital yenod is identical to the well-known INS Schuler 
period. We also show that if the INS error equations are generalized to a non-terrestrial case, a generalized 
form of the Schder oscillation exists, which takes the form of the Hill-Clohessy-Wiltshiie equations for 
satellite relative motion. 

SCHULER PENDULUM 

In a 1923 paper [l], while claiming that INS could not be realized because “differentiation bekveen the 
force of graviq and acceleration is impossible”, the German Physicist, Masimilian Schuler, explained that 
if one can build a pendulum that has the length of the earth’s radius then one could move at will the 
pendulum point of support and still have the pendulum point in the direction of the vertical. (Schuler 
explained that this stemned from the fact that the center of mass of the apparatus remained at the center of 
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the earth and thus at rest.) It is vers; well h o w  that, T,, , the period of such inatheinatical pendulum, is 

given by 
7 

Tp = 2.i: 

where R is the radius of the earth, and g is its grayity. 

SCHZTLER OSCILLATIONS IN Jk3 ERROR PROPAGATION 

The simplest i k y  to describe the generation of oscillations in INS is to esanline the behavior of a 
stable-platform INS in response to tilt error. 

For siniplicity, consider a stable-platform INS where the platfonn control systein is programmed 
to keep the platform horizontal with one of the platfonn axes, say the x-axis, pointing north, the y-axis 
pointing east and the z-axis pointing in the direction ofthe local nadir. Consequently the preferred platform 
coordinate system is the North, East, and Down system. Suppose that there is a platfonn tilt error, denoted 
by c p ,  about the platform North-axis (see Fig. 1). AS a result the East accelerometer reads gravity as 
acceleration coinponent f = -g. sin cp (the sign is negative because the acceleroineter reads raiiity as 
acceleration in the opposite direction). The INS computer is set to integrate this iiieasured f to obtain 
velociq. Thus the computed East velocity is the integral off,  in other words, 

Fig. 1: Generation of Miss-lwel Error in a Stable Platform INS. 

Usually cp z 0, therefore we can l i t e  

v = -0cp 
J 

In order to keep the platform level, the platform control system rotates the platforni about the North axis by 
the angular rate v / R , thus 

v 
@.-- 

R 



. 

Differentiation of the last equation and substitution of 0 froin Eq. (2.b) into the resultant equation yields 

The last equation is that of a harmonic oscillator whose period, T,, , is given by 

This period, known as Sclider period, is well known in Inertial Navigation technology. A comparison 
between Eqs. (5) and (1) reveals that 

T,, = T, 

It is only ironical that this period, a characteristic feature of INS, is named after Scliuler who maintained 
that the construction of INS was “an entirely impossible undertaking” [I ~ 21. 

LEO SATELLITE ORBITAL PERIOD 

Consider a LEO satellite on a circular orbit at the surface of a hypothetical perfectly smooth 
airless earth. In order to be in orbit the satellite has to travel at the orbital velocity where the csntrifugal 
acceleration balances gravity. That is, the orbital velocity, v , has to satisfy the relation 

v? 
R ”  
-=u 

thus 

V = & E  

The distance covered after one orbit is the circumference of ea& which is 21iR . Therefore wi t e :  

VT, = 2xR (9) 

To being the duration of one revolution. Substituting V from Eq. (8) into the last espression yields 

It means that the orbital period also equals the Schuler period! 

This can also be shown in the following way. It is well known that the Keplerian parameter, n , 
also ho\vn as Mean Motion, is given by 



but 

where R is the rector of earth radius from the center of earth to the satellite, and 1, is a unit vector in the 
direction of tliis vector. therefore 

Froin Eqs. (1 2) and (1 4) we obtain 
7 

and since n = 2n: /To, we obtain 
e 

TO=2r - d% 
which is the Schuler period. 

GEhXR4LIZATION OF TKE: SCRLTLER OSCILLATION IN D T S  ERROR PROPAG-4TION 

The above derivation uses a siinplified scalar INS error model to describe the Schuler oscillation 
This section generalizes that eqlanation to the vector case. It then shows how the generalized form of the 
INS error equations results in Hill's equations. 

The INS senses a specific force, f , consisting of the true acceleration, and the acceleration of 
gravi@> g , where the latter is interpreted 2s a negative acceleration, thus: 

f =a-g(R,) (17) 

where gravity is a vector function of the true position, R, . The INS accelerometer ineasurenient, f, , is 
corrupted by bias (among other errors neglected here), Fa ~ thus: 

As a result, the INS reconstruction of the true acceleration is as follo~~~s: 

where R, is the computed position vector. Using Eq. (1 8) the last equation becomes 

a, = a - g(Rt) i g(R,) + 6a 

:. a, = a +Fa t m(R, + 6R) - g (R,)] 

where 6R = R, - R, . Then using a truncated Taylor series expansion yields 

(1 9.4  

(19.b) 

fl ?.c) 
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g(R,) +$I 6R - n(n.)] -+ ... 
OR R, 

Consequently 

Therefore, to coinpute its position, the INS perfonns the following integration: 

R, = i j a ,  dt dt = jJ(a + Fa +G(R,)FR + ...) dt d t  

where G(R,) = 2g/ 5RI . Since (see aq. 13) 
Rl 

T .  where 1, = [ 0 0 13 ~ I t  can be shown in a straightfonvard manner that 

0 

G(r)=-L(I-31Rl:) 

R, = Jj acltdt 

R 
In reality, the true position is 

(19.d) 

(19.e) 

To get a differential equation for the INS errors, insert Eq. (23) into Zq. (20) to get 

R, = R, +iJ( Sa+G(R,)GR+ ...) dtdt (24) 

and differentiate Eq. (24) with respect to an inertial frame. This yields 

R, = R , + s ~ + G ( R , ) G R +  ... 

which, using the definition of 6R , can be witten as: 

SR - G ( R , ) ~ R  = 6a + ... 

Substitution of G(R,) froni Eq. (22) into the last equation yields: 

FR + s ( I  -31,l;)SR = Fa + ... (27) R 

Nomially in terrestrial INS quatiens the z-axis of the reference coordinates points dong the vertical, 
therefore 



(I -3l&) = diag{l 1 -2) 
and Eq. (27) becomes 

6R+&[1 1 -2]FR=6a (29) R 

The horizontal; that is, the x and y components of Eq. (29) form harmonic oscillators, with a natural 
frequency given by the square root of the scalar coefficient of the gravity gradient, and a corresponding 
period T,, = 27cm , which is identical to the espression given in Eq. (5). 

THE PERIOD OF HILL'S EQUATION 

Consider a LEO satellite in the vicinity of another LEO satellite. We name the f i t  satellite 
Primary Satellite (Ps) and the second Secondary Safellife (SQ. Define an orbital coordinate system whose 
origin is in the PS. Its x-asis is in the direction of the satellite zenith, ths y-axis is in the direction of the 
satellite Telocity vector, and the z-axis is nonnal to the orbital plane on the side that completes the set to a 
right-hand coordinate system (see Fig. 2). The differential equations that describe the relative displaceinent 
of the 5" with respect to the PS in this coordinate system are known as Hill's equations or Clohessy- 
Wiltshire equations [3]. In the absence of external forces these equations are: 

Primary 
y Secondary 

Satellite 7 

* .  

Satellite 

Fig. 3: The Orbital Coordinate System for Relative LEO. Motion 

y+2as=o  (30.b) 

z i Q 2 Z =  0 (30.c) 

All three components have an oscillatory mode at the angular frequency Q (for the z-component this is 
obvious). It has been shown [3] that 
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(we approsimate here the radius of the circular orbit by the earth radius) and as we saw before, T, the 
period that corresponds to such angular frequency is 

In fact it is easy to see without mathematical deyelopments that this is the period of the z component. For 
simplicity assunie that the orbit of the PS is circular and that the initial conditions on the x. y: and z 

components, and their derivatives are as follows S, = So = J', = 9, = 0, z, = 0 ,  z, f 0. Then the 
orbit of the SS is also a circular orbit that intersects the orbit of the PS mice in an orbit as shown in Fig. 3. 
Obviously the distance 

A x 

t = t o = O  

Secondary Satellite 

Fig. 3: The Relative Location of the Secondary Satellite with Respect to 
the Primary Satellite along the z-axis. 

between the two satellites changes direction once on every orbit and the frequency at which this happens is 
the orbital frequency which, in the preceding section, was found to be the Schiller frequency. 

EXTENSION OF THE rns ERROR EQUATIONS TO NOWTERRESTRIAL MECHAPJTZATLON 

If we consider an INS installed on a sateIlite circling the earth in a near-circular orbit, and if 
Eq. (26) is Written in a local-Tiertical Iocal-horizontal frame, Ilill's Equations result. To see this, consider 
the following general INS position error equation [4]: 

x 6R +ar x (0' x 6R) - G(R)GR = Aa ~ x f (33.a) 

where ar is the angular velocity of framer ulth respect to an inertial frame, and the pre-superscripts of the 
d/dt  operator indicate the frame in which the derivative is taken. The vectors Aa and denote, 



respectilvely, the acceleroineter errors and the angular error caused by the g r o  errors which are denoted by 
the vector E . (The latter errors are known as ‘psi’ errors). The ‘psi’ angular error develop according to [4] 

‘d 
dt 
--yS+o’ x w = & (33.b) 

At rest on earth 0‘ contributes a 24 hour oscillatory mode in the propagation of w , nrhich througll the 
term -w x f on the right side of Eq. (33.a) contniutes this mode to the propagation of 6R . In our case of 

a LEO satellite Wr is the orbital angular velocity at which the satellite orbits the earth, and accordbig to 
Eq. (1 I )  the orbital pcriod corresponding to Or is esactly the Schuler period. As a result, the oscillatory 
mode in the ‘psi‘ angular error has a Schuler period rather than a 24 hour period. Because c?)* 1s constant 
then the third term on fhe left of Eq. (33 a) drops, and so is the tern1 -\v X f on the right side of Eq. (33.a) 
because in orbit f = 0 .  Therefore, if we consider only accelerometer bias, Eq. (33.a) becomes. 

(33 .c) 

where, as before, 6a , is a vector whose three components are the components of the threc corresponding 

accelerometer biases. Let us denote the inagnitude of O‘ by n, that is n’ = . In a circular orbit (see 

Eq. 15) x i 2  = g / R , so Eq. (22) can be witten as 
I I  

G(R)GR = -n%R +3n’lRl;6R (34) 

n 

Choose the axes of the rotating frame such that cor = nk, , and the x- axis is pointing m the direction of 

the zenith; that is, 1, = ir  . Also, let 

A h  n 

6R = si, yjr + zkr 

Inserting Eqs. (313.c), (34): and (35) into Eq. (26) results in 

z - 2njr - 3n2x = &a, i ... 
j;+2nk=Fay +... 
z+n2z=6a, +... 

(35) 

(36 .4  
(36.b) 

(36.c) 

in which we reco-pize the homogenous part as the Hill-Clohessy-Wiltshire equations of relative motion, 
forced by the accelerometer bias and higher-order terms. We conclude that When on a circular orbit, the 
INS position error due to accelerometer bias behaves like the relative position between two adjacent 
salclliles on low earth orbit. Tn pamciilar, rhs r d n t i w  pnsi?ion along the normal to the PS orbital plnnc 
oscillates at the Schuler frequency. Moreover, the ‘psi’ angular error too has a Schuler period, which, 
unlike in terrestrial INS, is not coupled into the INS position error. 

8 



Remark: In some spacecraft the INS reference coordinate systein is an inertial one. In such cases equation 
(33.a) reduces to ‘ d \ y l d t  = E where designates the inertial frame. In such cases all three of the N S  
channels exhibit unbounded error growth due to  IO drift, and the spaceflight MS must use eternal aids 
such as star trackers to periodically re-align its attitude. 

I 

CONCLUSIONS 

In this paper we haye presented results that may assist orbital flight dynaiiiics and attitude conttol 
system engineers in the design and analysis of INS-equipped spacecraft, by showing how phenomenon 
that occur in terrestrial INS generalizes to spacecraft applications. We showed that the period of the 
Schuler pendulum, the Schuler period in INS error propagation, the LEO orbital period, and the period of 
the oscillatoIy part of the well-knom Hill-Clohessy-Wiltshire equations of LEO satellites’ relative motion 
are identical. We have also shown that generaliizhg the INS error equations results in Hill’s equations. 
The satellite relative position in this case corresponds to the INS position error, thus the Schuler frequency 
that is present in the errors of the level channels of terrestrial INS generalizes to an out-of-plane relative 
position oscillation at the orbit frequency. Although these oscillations do not directly enter into the attitude 
errors of a spacecraft-mounted INS, they do affect pointing of the spacecraft relative to the earth, since 
their effect on the navigation states corrupts the spacecraft’s on-board computation of the local level 
reference frame. We also described how INS gyro drift produces an additional Schuler oscillation in the 
attitude error when the INS reference coordinate system is the orbital local-level system. However, when 
the INS reference system is inertial, the attitude eshibits unbounded error growth due to gyro drift. 
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